
Data Integration: The Roles of XML and Database Middleware

Vanja Josifovski�

IBM Almaden

Laura M. Haasy

IBM Almaden

October 30, 2000

Today's life science companies face the problem of extracting and combining data stored in multiple

large repositories. While complex inter-source queries are common in this domain, traditionally these are

implemented by application code or left to the end-user to answer by combining the results of several

simpler single-source queries. Furthermore, many queries require running computational algorithms for

manipulation of sequences. We believe that the ability to query data in di�erent repositories without

regard to its location and representation can bring these companies to the next level of e�ciency.

Database middleware systems o�er users the ability to combine data from multiple sources in a single

query, without creating a physical data warehouse. By \wrapping" the actual sources, they provide exten-

sibility and encapsulation as well. The Garlic prototype [C+95] developed at IBM provides the user with

a virtual database to which they can pose arbitrarily complex queries, though the actual data needed are

stored or produced in several di�erent sources. Garlic can compensate for function that may be lacking in

a data source, to allow processing of these complex queries. Additionally, queries can exploit the special-

ized functions of a data source, so no function is lost in accessing the source through Garlic. The Garlic

technology as incorporated in IBM's DB2 UDB product forms the basis of a services o�ering for the life

sciences industry, known as DiscoveryLink [HKR+00].

The e�ciency and correctness of the execution plans generated by a data integration system depend on

the processing capabilities of the sources. For example, it is generally more e�cient to process restrictions

as close to the data as possible, to reduce the amount of data transferred. However, many Web-based

data sources process requests using a form which only permits certain combinations of restrictions (e.g.,

a particular binding pattern). To form correct plans, the middleware must have information on both the

data stored at the sources and the sources' capabilities.

XML is becoming a de facto standard for data exchange. Standards related to XML are being developed

for de�ning data structure (schemas). These will in turn allow vertical standards for schemas within

particular industries. While these standards will alleviate syntactic and semantic heterogeneity in the data

representations, they do not provide means to describe the processing capabilites of the sources.

In practice it is not feasible to forsee all the possible types of data sources and classify them in the

middleware system. Describing the capabilities of even simple sources is a daunting task which could

require changes to the middleware code { severely limiting extensibility. Therefore Garlic adopts a request-

reply framework where the middleware sends a request to the wrapper (representing a fragment of the

user's query). The wrapper replies with a portion of the request which can be performed by the source,

and the middleware will compensate for the remaining operations. This framework, also used in the ISO

9075-9 SQL/MED standard, allows the middleware to �nd an optimal processing plan without requiring

description of the source capabilities in the middleware.

�
vanja@almaden.ibm.com

y
laura@almaden.ibm.com

1



The database middleware approach has a number of advantages. The paradigm described above allows

the database query optimizer to �nd an optimal processing plan among the many possible ones, leading

to execution times orders of magnitude faster than when plans are hard-coded in applications. For the

users, the data in the sources appear to be in one virtual database and can be queried from existing

applications. New applications can be developed by programmers unfamiliar with the actual data sources.

Often, applications require local storage for (new) data used only locally. Rather than ad hoc solutions

such as storing the new results in a �le, this data can be stored in the middleware database where it can

be queried easily. We want to combine these advantages with the strength of XML for standardizing data

descriptions.

One step in this direction is to be able to query XML data sources from database middleware. To this

end, we can build XML wrappers for DiscoveryLink. Several technical issues arise when writing a wrapper

to interface an XML source with a relational middleware system. First, the wrapper needs to translate

between the XML data model and the relational model used in the middleware. Next, the computational

capabilities of the source must be available for use in the queries. Finally, many di�erent data sources will

export XML data. While it may not be possible to make one wrapper that works against all XML data

sources, tools should exist to make writing a wrapper for an XML source as easy as possible.

We solve the problem of data translation via table functions that can be executed in the wrapper

to produce tabular data from the XML input. The optimizer can choose when to apply these functions

during query execution to achieve best query performance. An interface for passing information about

costs between the middleware and the wrappers allows the optimizer to distinguish between alternative

plans.

Computational capabilities of data sources come in many avors. A source may provide functions that

produce one or more outputs. DiscoveryLink allows a user to de�ne function templates that are mapped to

the functions in computational sources. These functions can then be used in queries without regard to the

source of the arguments. For computations such as the BLAST [AGM+90] sequence matching algorithm

that produce potentially large numbers of results, the computation may be modeled directly as a table by

the wrapper.

Even XML sources storing data corresponding to the same schema may be accessed di�erently. For

example, locally stored XML �les may be accessed directly using the �le system interface, while Web

sources require a URL containing the form parameters. Therefore it is not possible to make a single

general-purpose XML wrapper. Nevertheless, semi-automatic wrapper generators can read XML DTDs or

XML Schema �les and generate the needed SQL data de�nition statements, while a wrapper skeleton is

completed with code for accessing the source by a wrapper writer. Further, existing wrapper code can be

reused when developing a new XML wrapper for a similar source.

We believe that, with the features outlined in this abstract, DiscoveryLink provides the functionality

required in the core of a life science information system. A combination of the XML tecnology with the

Garlic data integration framework allows for rapid development of a system for processing complex queries

over multiple di�erent data and computation resources.

References

[AGM+90] S.F. Altschul, W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. Basic local alignment search tool. J Molecular

Biology, 215:403{410, 1990.

[C+95] M. Carey et al. Towards heterogeneous multimedia information systems. In Proc. of the Intl. Workshop on

Research Issues in Data Engineering, March 1995.

[HKR+00] L. Haas, P. Kodali, J. Rice, P. Schwarz, and W. Swope. Integrating life sciences data { with a little garlic. In
Proc. BIBE, November 2000.

2


